V8 Project
double.h
Go to the documentation of this file.
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_DOUBLE_H_
6 #define V8_DOUBLE_H_
7 
8 #include "src/diy-fp.h"
9 
10 namespace v8 {
11 namespace internal {
12 
13 // We assume that doubles and uint64_t have the same endianness.
14 inline uint64_t double_to_uint64(double d) { return bit_cast<uint64_t>(d); }
15 inline double uint64_to_double(uint64_t d64) { return bit_cast<double>(d64); }
16 
17 // Helper functions for doubles.
18 class Double {
19  public:
20  static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
21  static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
22  static const uint64_t kSignificandMask =
23  V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
24  static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
25  static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
26  static const int kSignificandSize = 53;
27 
28  Double() : d64_(0) {}
29  explicit Double(double d) : d64_(double_to_uint64(d)) {}
30  explicit Double(uint64_t d64) : d64_(d64) {}
31  explicit Double(DiyFp diy_fp)
32  : d64_(DiyFpToUint64(diy_fp)) {}
33 
34  // The value encoded by this Double must be greater or equal to +0.0.
35  // It must not be special (infinity, or NaN).
36  DiyFp AsDiyFp() const {
37  DCHECK(Sign() > 0);
38  DCHECK(!IsSpecial());
39  return DiyFp(Significand(), Exponent());
40  }
41 
42  // The value encoded by this Double must be strictly greater than 0.
44  DCHECK(value() > 0.0);
45  uint64_t f = Significand();
46  int e = Exponent();
47 
48  // The current double could be a denormal.
49  while ((f & kHiddenBit) == 0) {
50  f <<= 1;
51  e--;
52  }
53  // Do the final shifts in one go.
56  return DiyFp(f, e);
57  }
58 
59  // Returns the double's bit as uint64.
60  uint64_t AsUint64() const {
61  return d64_;
62  }
63 
64  // Returns the next greater double. Returns +infinity on input +infinity.
65  double NextDouble() const {
66  if (d64_ == kInfinity) return Double(kInfinity).value();
67  if (Sign() < 0 && Significand() == 0) {
68  // -0.0
69  return 0.0;
70  }
71  if (Sign() < 0) {
72  return Double(d64_ - 1).value();
73  } else {
74  return Double(d64_ + 1).value();
75  }
76  }
77 
78  int Exponent() const {
79  if (IsDenormal()) return kDenormalExponent;
80 
81  uint64_t d64 = AsUint64();
82  int biased_e =
83  static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
84  return biased_e - kExponentBias;
85  }
86 
87  uint64_t Significand() const {
88  uint64_t d64 = AsUint64();
89  uint64_t significand = d64 & kSignificandMask;
90  if (!IsDenormal()) {
91  return significand + kHiddenBit;
92  } else {
93  return significand;
94  }
95  }
96 
97  // Returns true if the double is a denormal.
98  bool IsDenormal() const {
99  uint64_t d64 = AsUint64();
100  return (d64 & kExponentMask) == 0;
101  }
102 
103  // We consider denormals not to be special.
104  // Hence only Infinity and NaN are special.
105  bool IsSpecial() const {
106  uint64_t d64 = AsUint64();
107  return (d64 & kExponentMask) == kExponentMask;
108  }
109 
110  bool IsInfinite() const {
111  uint64_t d64 = AsUint64();
112  return ((d64 & kExponentMask) == kExponentMask) &&
113  ((d64 & kSignificandMask) == 0);
114  }
115 
116  int Sign() const {
117  uint64_t d64 = AsUint64();
118  return (d64 & kSignMask) == 0? 1: -1;
119  }
120 
121  // Precondition: the value encoded by this Double must be greater or equal
122  // than +0.0.
124  DCHECK(Sign() > 0);
125  return DiyFp(Significand() * 2 + 1, Exponent() - 1);
126  }
127 
128  // Returns the two boundaries of this.
129  // The bigger boundary (m_plus) is normalized. The lower boundary has the same
130  // exponent as m_plus.
131  // Precondition: the value encoded by this Double must be greater than 0.
132  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
133  DCHECK(value() > 0.0);
134  DiyFp v = this->AsDiyFp();
135  bool significand_is_zero = (v.f() == kHiddenBit);
136  DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
137  DiyFp m_minus;
138  if (significand_is_zero && v.e() != kDenormalExponent) {
139  // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
140  // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
141  // at a distance of 1e8.
142  // The only exception is for the smallest normal: the largest denormal is
143  // at the same distance as its successor.
144  // Note: denormals have the same exponent as the smallest normals.
145  m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
146  } else {
147  m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
148  }
149  m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
150  m_minus.set_e(m_plus.e());
151  *out_m_plus = m_plus;
152  *out_m_minus = m_minus;
153  }
154 
155  double value() const { return uint64_to_double(d64_); }
156 
157  // Returns the significand size for a given order of magnitude.
158  // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
159  // This function returns the number of significant binary digits v will have
160  // once its encoded into a double. In almost all cases this is equal to
161  // kSignificandSize. The only exception are denormals. They start with leading
162  // zeroes and their effective significand-size is hence smaller.
163  static int SignificandSizeForOrderOfMagnitude(int order) {
164  if (order >= (kDenormalExponent + kSignificandSize)) {
165  return kSignificandSize;
166  }
167  if (order <= kDenormalExponent) return 0;
168  return order - kDenormalExponent;
169  }
170 
171  private:
172  static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
173  static const int kDenormalExponent = -kExponentBias + 1;
174  static const int kMaxExponent = 0x7FF - kExponentBias;
175  static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
176 
177  const uint64_t d64_;
178 
179  static uint64_t DiyFpToUint64(DiyFp diy_fp) {
180  uint64_t significand = diy_fp.f();
181  int exponent = diy_fp.e();
182  while (significand > kHiddenBit + kSignificandMask) {
183  significand >>= 1;
184  exponent++;
185  }
186  if (exponent >= kMaxExponent) {
187  return kInfinity;
188  }
189  if (exponent < kDenormalExponent) {
190  return 0;
191  }
192  while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
193  significand <<= 1;
194  exponent--;
195  }
196  uint64_t biased_exponent;
197  if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
198  biased_exponent = 0;
199  } else {
200  biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
201  }
202  return (significand & kSignificandMask) |
203  (biased_exponent << kPhysicalSignificandSize);
204  }
205 };
206 
207 } } // namespace v8::internal
208 
209 #endif // V8_DOUBLE_H_
void Normalize()
Definition: diy-fp.h:53
void set_e(int new_value)
Definition: diy-fp.h:83
static const int kSignificandSize
Definition: diy-fp.h:18
void set_f(uint64_t new_value)
Definition: diy-fp.h:82
uint64_t f() const
Definition: diy-fp.h:79
int e() const
Definition: diy-fp.h:80
Double(DiyFp diy_fp)
Definition: double.h:31
uint64_t AsUint64() const
Definition: double.h:60
const uint64_t d64_
Definition: double.h:177
static const int kExponentBias
Definition: double.h:172
bool IsDenormal() const
Definition: double.h:98
static const int kDenormalExponent
Definition: double.h:173
static const uint64_t kSignMask
Definition: double.h:20
Double(double d)
Definition: double.h:29
bool IsInfinite() const
Definition: double.h:110
static const uint64_t kInfinity
Definition: double.h:175
static uint64_t DiyFpToUint64(DiyFp diy_fp)
Definition: double.h:179
static const uint64_t kSignificandMask
Definition: double.h:22
static int SignificandSizeForOrderOfMagnitude(int order)
Definition: double.h:163
bool IsSpecial() const
Definition: double.h:105
DiyFp AsDiyFp() const
Definition: double.h:36
static const uint64_t kExponentMask
Definition: double.h:21
static const uint64_t kHiddenBit
Definition: double.h:24
Double(uint64_t d64)
Definition: double.h:30
DiyFp UpperBoundary() const
Definition: double.h:123
static const int kSignificandSize
Definition: double.h:26
double NextDouble() const
Definition: double.h:65
double value() const
Definition: double.h:155
void NormalizedBoundaries(DiyFp *out_m_minus, DiyFp *out_m_plus) const
Definition: double.h:132
uint64_t Significand() const
Definition: double.h:87
DiyFp AsNormalizedDiyFp() const
Definition: double.h:43
static const int kPhysicalSignificandSize
Definition: double.h:25
int Exponent() const
Definition: double.h:78
static const int kMaxExponent
Definition: double.h:174
int Sign() const
Definition: double.h:116
#define DCHECK(condition)
Definition: logging.h:205
#define V8_2PART_UINT64_C(a, b)
Definition: macros.h:376
double uint64_to_double(uint64_t d64)
Definition: double.h:15
uint64_t double_to_uint64(double d)
Definition: double.h:14
Debugger support for the V8 JavaScript engine.
Definition: accessors.cc:20