V8 Project
fast-dtoa.cc
Go to the documentation of this file.
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "include/v8stdint.h"
6 #include "src/base/logging.h"
7 #include "src/utils.h"
8 
9 #include "src/fast-dtoa.h"
10 
11 #include "src/cached-powers.h"
12 #include "src/diy-fp.h"
13 #include "src/double.h"
14 
15 namespace v8 {
16 namespace internal {
17 
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26 
27 
28 // Adjusts the last digit of the generated number, and screens out generated
29 // solutions that may be inaccurate. A solution may be inaccurate if it is
30 // outside the safe interval, or if we ctannot prove that it is closer to the
31 // input than a neighboring representation of the same length.
32 //
33 // Input: * buffer containing the digits of too_high / 10^kappa
34 // * the buffer's length
35 // * distance_too_high_w == (too_high - w).f() * unit
36 // * unsafe_interval == (too_high - too_low).f() * unit
37 // * rest = (too_high - buffer * 10^kappa).f() * unit
38 // * ten_kappa = 10^kappa * unit
39 // * unit = the common multiplier
40 // Output: returns true if the buffer is guaranteed to contain the closest
41 // representable number to the input.
42 // Modifies the generated digits in the buffer to approach (round towards) w.
43 static bool RoundWeed(Vector<char> buffer,
44  int length,
45  uint64_t distance_too_high_w,
46  uint64_t unsafe_interval,
47  uint64_t rest,
48  uint64_t ten_kappa,
49  uint64_t unit) {
50  uint64_t small_distance = distance_too_high_w - unit;
51  uint64_t big_distance = distance_too_high_w + unit;
52  // Let w_low = too_high - big_distance, and
53  // w_high = too_high - small_distance.
54  // Note: w_low < w < w_high
55  //
56  // The real w (* unit) must lie somewhere inside the interval
57  // ]w_low; w_high[ (often written as "(w_low; w_high)")
58 
59  // Basically the buffer currently contains a number in the unsafe interval
60  // ]too_low; too_high[ with too_low < w < too_high
61  //
62  // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63  // ^v 1 unit ^ ^ ^ ^
64  // boundary_high --------------------- . . . .
65  // ^v 1 unit . . . .
66  // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
67  // . . ^ . .
68  // . big_distance . . .
69  // . . . . rest
70  // small_distance . . . .
71  // v . . . .
72  // w_high - - - - - - - - - - - - - - - - - - . . . .
73  // ^v 1 unit . . . .
74  // w ---------------------------------------- . . . .
75  // ^v 1 unit v . . .
76  // w_low - - - - - - - - - - - - - - - - - - - - - . . .
77  // . . v
78  // buffer --------------------------------------------------+-------+--------
79  // . .
80  // safe_interval .
81  // v .
82  // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
83  // ^v 1 unit .
84  // boundary_low ------------------------- unsafe_interval
85  // ^v 1 unit v
86  // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
87  //
88  //
89  // Note that the value of buffer could lie anywhere inside the range too_low
90  // to too_high.
91  //
92  // boundary_low, boundary_high and w are approximations of the real boundaries
93  // and v (the input number). They are guaranteed to be precise up to one unit.
94  // In fact the error is guaranteed to be strictly less than one unit.
95  //
96  // Anything that lies outside the unsafe interval is guaranteed not to round
97  // to v when read again.
98  // Anything that lies inside the safe interval is guaranteed to round to v
99  // when read again.
100  // If the number inside the buffer lies inside the unsafe interval but not
101  // inside the safe interval then we simply do not know and bail out (returning
102  // false).
103  //
104  // Similarly we have to take into account the imprecision of 'w' when finding
105  // the closest representation of 'w'. If we have two potential
106  // representations, and one is closer to both w_low and w_high, then we know
107  // it is closer to the actual value v.
108  //
109  // By generating the digits of too_high we got the largest (closest to
110  // too_high) buffer that is still in the unsafe interval. In the case where
111  // w_high < buffer < too_high we try to decrement the buffer.
112  // This way the buffer approaches (rounds towards) w.
113  // There are 3 conditions that stop the decrementation process:
114  // 1) the buffer is already below w_high
115  // 2) decrementing the buffer would make it leave the unsafe interval
116  // 3) decrementing the buffer would yield a number below w_high and farther
117  // away than the current number. In other words:
118  // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
119  // Instead of using the buffer directly we use its distance to too_high.
120  // Conceptually rest ~= too_high - buffer
121  // We need to do the following tests in this order to avoid over- and
122  // underflows.
123  DCHECK(rest <= unsafe_interval);
124  while (rest < small_distance && // Negated condition 1
125  unsafe_interval - rest >= ten_kappa && // Negated condition 2
126  (rest + ten_kappa < small_distance || // buffer{-1} > w_high
127  small_distance - rest >= rest + ten_kappa - small_distance)) {
128  buffer[length - 1]--;
129  rest += ten_kappa;
130  }
131 
132  // We have approached w+ as much as possible. We now test if approaching w-
133  // would require changing the buffer. If yes, then we have two possible
134  // representations close to w, but we cannot decide which one is closer.
135  if (rest < big_distance &&
136  unsafe_interval - rest >= ten_kappa &&
137  (rest + ten_kappa < big_distance ||
138  big_distance - rest > rest + ten_kappa - big_distance)) {
139  return false;
140  }
141 
142  // Weeding test.
143  // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
144  // Since too_low = too_high - unsafe_interval this is equivalent to
145  // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
146  // Conceptually we have: rest ~= too_high - buffer
147  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
148 }
149 
150 
151 // Rounds the buffer upwards if the result is closer to v by possibly adding
152 // 1 to the buffer. If the precision of the calculation is not sufficient to
153 // round correctly, return false.
154 // The rounding might shift the whole buffer in which case the kappa is
155 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
156 //
157 // If 2*rest > ten_kappa then the buffer needs to be round up.
158 // rest can have an error of +/- 1 unit. This function accounts for the
159 // imprecision and returns false, if the rounding direction cannot be
160 // unambiguously determined.
161 //
162 // Precondition: rest < ten_kappa.
163 static bool RoundWeedCounted(Vector<char> buffer,
164  int length,
165  uint64_t rest,
166  uint64_t ten_kappa,
167  uint64_t unit,
168  int* kappa) {
169  DCHECK(rest < ten_kappa);
170  // The following tests are done in a specific order to avoid overflows. They
171  // will work correctly with any uint64 values of rest < ten_kappa and unit.
172  //
173  // If the unit is too big, then we don't know which way to round. For example
174  // a unit of 50 means that the real number lies within rest +/- 50. If
175  // 10^kappa == 40 then there is no way to tell which way to round.
176  if (unit >= ten_kappa) return false;
177  // Even if unit is just half the size of 10^kappa we are already completely
178  // lost. (And after the previous test we know that the expression will not
179  // over/underflow.)
180  if (ten_kappa - unit <= unit) return false;
181  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
182  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
183  return true;
184  }
185  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
186  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
187  // Increment the last digit recursively until we find a non '9' digit.
188  buffer[length - 1]++;
189  for (int i = length - 1; i > 0; --i) {
190  if (buffer[i] != '0' + 10) break;
191  buffer[i] = '0';
192  buffer[i - 1]++;
193  }
194  // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
195  // exception of the first digit all digits are now '0'. Simply switch the
196  // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
197  // the power (the kappa) is increased.
198  if (buffer[0] == '0' + 10) {
199  buffer[0] = '1';
200  (*kappa) += 1;
201  }
202  return true;
203  }
204  return false;
205 }
206 
207 
208 static const uint32_t kTen4 = 10000;
209 static const uint32_t kTen5 = 100000;
210 static const uint32_t kTen6 = 1000000;
211 static const uint32_t kTen7 = 10000000;
212 static const uint32_t kTen8 = 100000000;
213 static const uint32_t kTen9 = 1000000000;
214 
215 // Returns the biggest power of ten that is less than or equal than the given
216 // number. We furthermore receive the maximum number of bits 'number' has.
217 // If number_bits == 0 then 0^-1 is returned
218 // The number of bits must be <= 32.
219 // Precondition: number < (1 << (number_bits + 1)).
220 static void BiggestPowerTen(uint32_t number,
221  int number_bits,
222  uint32_t* power,
223  int* exponent) {
224  switch (number_bits) {
225  case 32:
226  case 31:
227  case 30:
228  if (kTen9 <= number) {
229  *power = kTen9;
230  *exponent = 9;
231  break;
232  } // else fallthrough
233  case 29:
234  case 28:
235  case 27:
236  if (kTen8 <= number) {
237  *power = kTen8;
238  *exponent = 8;
239  break;
240  } // else fallthrough
241  case 26:
242  case 25:
243  case 24:
244  if (kTen7 <= number) {
245  *power = kTen7;
246  *exponent = 7;
247  break;
248  } // else fallthrough
249  case 23:
250  case 22:
251  case 21:
252  case 20:
253  if (kTen6 <= number) {
254  *power = kTen6;
255  *exponent = 6;
256  break;
257  } // else fallthrough
258  case 19:
259  case 18:
260  case 17:
261  if (kTen5 <= number) {
262  *power = kTen5;
263  *exponent = 5;
264  break;
265  } // else fallthrough
266  case 16:
267  case 15:
268  case 14:
269  if (kTen4 <= number) {
270  *power = kTen4;
271  *exponent = 4;
272  break;
273  } // else fallthrough
274  case 13:
275  case 12:
276  case 11:
277  case 10:
278  if (1000 <= number) {
279  *power = 1000;
280  *exponent = 3;
281  break;
282  } // else fallthrough
283  case 9:
284  case 8:
285  case 7:
286  if (100 <= number) {
287  *power = 100;
288  *exponent = 2;
289  break;
290  } // else fallthrough
291  case 6:
292  case 5:
293  case 4:
294  if (10 <= number) {
295  *power = 10;
296  *exponent = 1;
297  break;
298  } // else fallthrough
299  case 3:
300  case 2:
301  case 1:
302  if (1 <= number) {
303  *power = 1;
304  *exponent = 0;
305  break;
306  } // else fallthrough
307  case 0:
308  *power = 0;
309  *exponent = -1;
310  break;
311  default:
312  // Following assignments are here to silence compiler warnings.
313  *power = 0;
314  *exponent = 0;
315  UNREACHABLE();
316  }
317 }
318 
319 
320 // Generates the digits of input number w.
321 // w is a floating-point number (DiyFp), consisting of a significand and an
322 // exponent. Its exponent is bounded by kMinimalTargetExponent and
323 // kMaximalTargetExponent.
324 // Hence -60 <= w.e() <= -32.
325 //
326 // Returns false if it fails, in which case the generated digits in the buffer
327 // should not be used.
328 // Preconditions:
329 // * low, w and high are correct up to 1 ulp (unit in the last place). That
330 // is, their error must be less than a unit of their last digits.
331 // * low.e() == w.e() == high.e()
332 // * low < w < high, and taking into account their error: low~ <= high~
333 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
334 // Postconditions: returns false if procedure fails.
335 // otherwise:
336 // * buffer is not null-terminated, but len contains the number of digits.
337 // * buffer contains the shortest possible decimal digit-sequence
338 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
339 // correct values of low and high (without their error).
340 // * if more than one decimal representation gives the minimal number of
341 // decimal digits then the one closest to W (where W is the correct value
342 // of w) is chosen.
343 // Remark: this procedure takes into account the imprecision of its input
344 // numbers. If the precision is not enough to guarantee all the postconditions
345 // then false is returned. This usually happens rarely (~0.5%).
346 //
347 // Say, for the sake of example, that
348 // w.e() == -48, and w.f() == 0x1234567890abcdef
349 // w's value can be computed by w.f() * 2^w.e()
350 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
351 // -> w's integral part is 0x1234
352 // w's fractional part is therefore 0x567890abcdef.
353 // Printing w's integral part is easy (simply print 0x1234 in decimal).
354 // In order to print its fraction we repeatedly multiply the fraction by 10 and
355 // get each digit. Example the first digit after the point would be computed by
356 // (0x567890abcdef * 10) >> 48. -> 3
357 // The whole thing becomes slightly more complicated because we want to stop
358 // once we have enough digits. That is, once the digits inside the buffer
359 // represent 'w' we can stop. Everything inside the interval low - high
360 // represents w. However we have to pay attention to low, high and w's
361 // imprecision.
362 static bool DigitGen(DiyFp low,
363  DiyFp w,
364  DiyFp high,
365  Vector<char> buffer,
366  int* length,
367  int* kappa) {
368  DCHECK(low.e() == w.e() && w.e() == high.e());
369  DCHECK(low.f() + 1 <= high.f() - 1);
371  // low, w and high are imprecise, but by less than one ulp (unit in the last
372  // place).
373  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
374  // the new numbers are outside of the interval we want the final
375  // representation to lie in.
376  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
377  // numbers that are certain to lie in the interval. We will use this fact
378  // later on.
379  // We will now start by generating the digits within the uncertain
380  // interval. Later we will weed out representations that lie outside the safe
381  // interval and thus _might_ lie outside the correct interval.
382  uint64_t unit = 1;
383  DiyFp too_low = DiyFp(low.f() - unit, low.e());
384  DiyFp too_high = DiyFp(high.f() + unit, high.e());
385  // too_low and too_high are guaranteed to lie outside the interval we want the
386  // generated number in.
387  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
388  // We now cut the input number into two parts: the integral digits and the
389  // fractionals. We will not write any decimal separator though, but adapt
390  // kappa instead.
391  // Reminder: we are currently computing the digits (stored inside the buffer)
392  // such that: too_low < buffer * 10^kappa < too_high
393  // We use too_high for the digit_generation and stop as soon as possible.
394  // If we stop early we effectively round down.
395  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
396  // Division by one is a shift.
397  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
398  // Modulo by one is an and.
399  uint64_t fractionals = too_high.f() & (one.f() - 1);
400  uint32_t divisor;
401  int divisor_exponent;
402  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
403  &divisor, &divisor_exponent);
404  *kappa = divisor_exponent + 1;
405  *length = 0;
406  // Loop invariant: buffer = too_high / 10^kappa (integer division)
407  // The invariant holds for the first iteration: kappa has been initialized
408  // with the divisor exponent + 1. And the divisor is the biggest power of ten
409  // that is smaller than integrals.
410  while (*kappa > 0) {
411  int digit = integrals / divisor;
412  buffer[*length] = '0' + digit;
413  (*length)++;
414  integrals %= divisor;
415  (*kappa)--;
416  // Note that kappa now equals the exponent of the divisor and that the
417  // invariant thus holds again.
418  uint64_t rest =
419  (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
420  // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
421  // Reminder: unsafe_interval.e() == one.e()
422  if (rest < unsafe_interval.f()) {
423  // Rounding down (by not emitting the remaining digits) yields a number
424  // that lies within the unsafe interval.
425  return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
426  unsafe_interval.f(), rest,
427  static_cast<uint64_t>(divisor) << -one.e(), unit);
428  }
429  divisor /= 10;
430  }
431 
432  // The integrals have been generated. We are at the point of the decimal
433  // separator. In the following loop we simply multiply the remaining digits by
434  // 10 and divide by one. We just need to pay attention to multiply associated
435  // data (like the interval or 'unit'), too.
436  // Note that the multiplication by 10 does not overflow, because w.e >= -60
437  // and thus one.e >= -60.
438  DCHECK(one.e() >= -60);
439  DCHECK(fractionals < one.f());
440  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
441  while (true) {
442  fractionals *= 10;
443  unit *= 10;
444  unsafe_interval.set_f(unsafe_interval.f() * 10);
445  // Integer division by one.
446  int digit = static_cast<int>(fractionals >> -one.e());
447  buffer[*length] = '0' + digit;
448  (*length)++;
449  fractionals &= one.f() - 1; // Modulo by one.
450  (*kappa)--;
451  if (fractionals < unsafe_interval.f()) {
452  return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
453  unsafe_interval.f(), fractionals, one.f(), unit);
454  }
455  }
456 }
457 
458 
459 
460 // Generates (at most) requested_digits of input number w.
461 // w is a floating-point number (DiyFp), consisting of a significand and an
462 // exponent. Its exponent is bounded by kMinimalTargetExponent and
463 // kMaximalTargetExponent.
464 // Hence -60 <= w.e() <= -32.
465 //
466 // Returns false if it fails, in which case the generated digits in the buffer
467 // should not be used.
468 // Preconditions:
469 // * w is correct up to 1 ulp (unit in the last place). That
470 // is, its error must be strictly less than a unit of its last digit.
471 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
472 //
473 // Postconditions: returns false if procedure fails.
474 // otherwise:
475 // * buffer is not null-terminated, but length contains the number of
476 // digits.
477 // * the representation in buffer is the most precise representation of
478 // requested_digits digits.
479 // * buffer contains at most requested_digits digits of w. If there are less
480 // than requested_digits digits then some trailing '0's have been removed.
481 // * kappa is such that
482 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
483 //
484 // Remark: This procedure takes into account the imprecision of its input
485 // numbers. If the precision is not enough to guarantee all the postconditions
486 // then false is returned. This usually happens rarely, but the failure-rate
487 // increases with higher requested_digits.
488 static bool DigitGenCounted(DiyFp w,
489  int requested_digits,
490  Vector<char> buffer,
491  int* length,
492  int* kappa) {
496  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
497  // also scale its error.
498  uint64_t w_error = 1;
499  // We cut the input number into two parts: the integral digits and the
500  // fractional digits. We don't emit any decimal separator, but adapt kappa
501  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
502  // increase kappa by 1.
503  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
504  // Division by one is a shift.
505  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
506  // Modulo by one is an and.
507  uint64_t fractionals = w.f() & (one.f() - 1);
508  uint32_t divisor;
509  int divisor_exponent;
510  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
511  &divisor, &divisor_exponent);
512  *kappa = divisor_exponent + 1;
513  *length = 0;
514 
515  // Loop invariant: buffer = w / 10^kappa (integer division)
516  // The invariant holds for the first iteration: kappa has been initialized
517  // with the divisor exponent + 1. And the divisor is the biggest power of ten
518  // that is smaller than 'integrals'.
519  while (*kappa > 0) {
520  int digit = integrals / divisor;
521  buffer[*length] = '0' + digit;
522  (*length)++;
523  requested_digits--;
524  integrals %= divisor;
525  (*kappa)--;
526  // Note that kappa now equals the exponent of the divisor and that the
527  // invariant thus holds again.
528  if (requested_digits == 0) break;
529  divisor /= 10;
530  }
531 
532  if (requested_digits == 0) {
533  uint64_t rest =
534  (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
535  return RoundWeedCounted(buffer, *length, rest,
536  static_cast<uint64_t>(divisor) << -one.e(), w_error,
537  kappa);
538  }
539 
540  // The integrals have been generated. We are at the point of the decimal
541  // separator. In the following loop we simply multiply the remaining digits by
542  // 10 and divide by one. We just need to pay attention to multiply associated
543  // data (the 'unit'), too.
544  // Note that the multiplication by 10 does not overflow, because w.e >= -60
545  // and thus one.e >= -60.
546  DCHECK(one.e() >= -60);
547  DCHECK(fractionals < one.f());
548  DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
549  while (requested_digits > 0 && fractionals > w_error) {
550  fractionals *= 10;
551  w_error *= 10;
552  // Integer division by one.
553  int digit = static_cast<int>(fractionals >> -one.e());
554  buffer[*length] = '0' + digit;
555  (*length)++;
556  requested_digits--;
557  fractionals &= one.f() - 1; // Modulo by one.
558  (*kappa)--;
559  }
560  if (requested_digits != 0) return false;
561  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
562  kappa);
563 }
564 
565 
566 // Provides a decimal representation of v.
567 // Returns true if it succeeds, otherwise the result cannot be trusted.
568 // There will be *length digits inside the buffer (not null-terminated).
569 // If the function returns true then
570 // v == (double) (buffer * 10^decimal_exponent).
571 // The digits in the buffer are the shortest representation possible: no
572 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
573 // chosen even if the longer one would be closer to v.
574 // The last digit will be closest to the actual v. That is, even if several
575 // digits might correctly yield 'v' when read again, the closest will be
576 // computed.
577 static bool Grisu3(double v,
578  Vector<char> buffer,
579  int* length,
580  int* decimal_exponent) {
581  DiyFp w = Double(v).AsNormalizedDiyFp();
582  // boundary_minus and boundary_plus are the boundaries between v and its
583  // closest floating-point neighbors. Any number strictly between
584  // boundary_minus and boundary_plus will round to v when convert to a double.
585  // Grisu3 will never output representations that lie exactly on a boundary.
586  DiyFp boundary_minus, boundary_plus;
587  Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
588  DCHECK(boundary_plus.e() == w.e());
589  DiyFp ten_mk; // Cached power of ten: 10^-k
590  int mk; // -k
591  int ten_mk_minimal_binary_exponent =
593  int ten_mk_maximal_binary_exponent =
596  ten_mk_minimal_binary_exponent,
597  ten_mk_maximal_binary_exponent,
598  &ten_mk, &mk);
599  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
601  (kMaximalTargetExponent >= w.e() + ten_mk.e() +
603  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
604  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
605 
606  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
607  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
608  // off by a small amount.
609  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
610  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
611  // (f-1) * 2^e < w*10^k < (f+1) * 2^e
612  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
613  DCHECK(scaled_w.e() ==
614  boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
615  // In theory it would be possible to avoid some recomputations by computing
616  // the difference between w and boundary_minus/plus (a power of 2) and to
617  // compute scaled_boundary_minus/plus by subtracting/adding from
618  // scaled_w. However the code becomes much less readable and the speed
619  // enhancements are not terriffic.
620  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
621  DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
622 
623  // DigitGen will generate the digits of scaled_w. Therefore we have
624  // v == (double) (scaled_w * 10^-mk).
625  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
626  // integer than it will be updated. For instance if scaled_w == 1.23 then
627  // the buffer will be filled with "123" und the decimal_exponent will be
628  // decreased by 2.
629  int kappa;
630  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
631  buffer, length, &kappa);
632  *decimal_exponent = -mk + kappa;
633  return result;
634 }
635 
636 
637 // The "counted" version of grisu3 (see above) only generates requested_digits
638 // number of digits. This version does not generate the shortest representation,
639 // and with enough requested digits 0.1 will at some point print as 0.9999999...
640 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
641 // therefore the rounding strategy for halfway cases is irrelevant.
642 static bool Grisu3Counted(double v,
643  int requested_digits,
644  Vector<char> buffer,
645  int* length,
646  int* decimal_exponent) {
647  DiyFp w = Double(v).AsNormalizedDiyFp();
648  DiyFp ten_mk; // Cached power of ten: 10^-k
649  int mk; // -k
650  int ten_mk_minimal_binary_exponent =
652  int ten_mk_maximal_binary_exponent =
655  ten_mk_minimal_binary_exponent,
656  ten_mk_maximal_binary_exponent,
657  &ten_mk, &mk);
658  DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
660  (kMaximalTargetExponent >= w.e() + ten_mk.e() +
662  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
663  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
664 
665  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
666  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
667  // off by a small amount.
668  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
669  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
670  // (f-1) * 2^e < w*10^k < (f+1) * 2^e
671  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
672 
673  // We now have (double) (scaled_w * 10^-mk).
674  // DigitGen will generate the first requested_digits digits of scaled_w and
675  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
676  // will not always be exactly the same since DigitGenCounted only produces a
677  // limited number of digits.)
678  int kappa;
679  bool result = DigitGenCounted(scaled_w, requested_digits,
680  buffer, length, &kappa);
681  *decimal_exponent = -mk + kappa;
682  return result;
683 }
684 
685 
686 bool FastDtoa(double v,
688  int requested_digits,
689  Vector<char> buffer,
690  int* length,
691  int* decimal_point) {
692  DCHECK(v > 0);
693  DCHECK(!Double(v).IsSpecial());
694 
695  bool result = false;
696  int decimal_exponent = 0;
697  switch (mode) {
698  case FAST_DTOA_SHORTEST:
699  result = Grisu3(v, buffer, length, &decimal_exponent);
700  break;
701  case FAST_DTOA_PRECISION:
702  result = Grisu3Counted(v, requested_digits,
703  buffer, length, &decimal_exponent);
704  break;
705  default:
706  UNREACHABLE();
707  }
708  if (result) {
709  *decimal_point = *length + decimal_exponent;
710  buffer[*length] = '\0';
711  }
712  return result;
713 }
714 
715 } } // namespace v8::internal
static DiyFp Minus(const DiyFp &a, const DiyFp &b)
Definition: diy-fp.h:36
static const int kSignificandSize
Definition: diy-fp.h:18
static DiyFp Times(const DiyFp &a, const DiyFp &b)
Definition: diy-fp.h:47
void set_f(uint64_t new_value)
Definition: diy-fp.h:82
uint64_t f() const
Definition: diy-fp.h:79
int e() const
Definition: diy-fp.h:80
void NormalizedBoundaries(DiyFp *out_m_minus, DiyFp *out_m_plus) const
Definition: double.h:132
DiyFp AsNormalizedDiyFp() const
Definition: double.h:43
static void GetCachedPowerForBinaryExponentRange(int min_exponent, int max_exponent, DiyFp *power, int *decimal_exponent)
enable harmony numeric enable harmony object literal extensions Optimize object Array DOM strings and string trace pretenuring decisions of HAllocate instructions Enables optimizations which favor memory size over execution speed maximum source size in bytes considered for a single inlining maximum cumulative number of AST nodes considered for inlining trace the tracking of allocation sites deoptimize every n garbage collections perform array bounds checks elimination analyze liveness of environment slots and zap dead values flushes the cache of optimized code for closures on every GC allow uint32 values on optimize frames if they are used only in safe operations track concurrent recompilation artificial compilation delay in ms do not emit check maps for constant values that have a leaf deoptimize the optimized code if the layout of the maps changes enable context specialization in TurboFan execution budget before interrupt is triggered max percentage of megamorphic generic ICs to allow optimization enable use of SAHF instruction if enable use of VFP3 instructions if available enable use of NEON instructions if enable use of SDIV and UDIV instructions if enable use of MLS instructions if enable loading bit constant by means of movw movt instruction enable unaligned accesses for enable use of d16 d31 registers on ARM this requires VFP3 force all emitted branches to be in long mode(MIPS only)") DEFINE_BOOL(enable_always_align_csp
#define UNREACHABLE()
Definition: logging.h:30
#define DCHECK(condition)
Definition: logging.h:205
#define V8_2PART_UINT64_C(a, b)
Definition: macros.h:376
static bool DigitGenCounted(DiyFp w, int requested_digits, Vector< char > buffer, int *length, int *kappa)
Definition: fast-dtoa.cc:488
static const uint32_t kTen5
Definition: fast-dtoa.cc:209
static bool RoundWeedCounted(Vector< char > buffer, int length, uint64_t rest, uint64_t ten_kappa, uint64_t unit, int *kappa)
Definition: fast-dtoa.cc:163
static const int kMinimalTargetExponent
Definition: fast-dtoa.cc:24
@ FAST_DTOA_SHORTEST
Definition: fast-dtoa.h:15
@ FAST_DTOA_PRECISION
Definition: fast-dtoa.h:18
static const uint32_t kTen6
Definition: fast-dtoa.cc:210
static bool Grisu3Counted(double v, int requested_digits, Vector< char > buffer, int *length, int *decimal_exponent)
Definition: fast-dtoa.cc:642
static bool RoundWeed(Vector< char > buffer, int length, uint64_t distance_too_high_w, uint64_t unsafe_interval, uint64_t rest, uint64_t ten_kappa, uint64_t unit)
Definition: fast-dtoa.cc:43
static const uint32_t kTen4
Definition: fast-dtoa.cc:208
static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t *power, int *exponent)
Definition: fast-dtoa.cc:220
static const uint32_t kTen8
Definition: fast-dtoa.cc:212
static bool Grisu3(double v, Vector< char > buffer, int *length, int *decimal_exponent)
Definition: fast-dtoa.cc:577
bool FastDtoa(double v, FastDtoaMode mode, int requested_digits, Vector< char > buffer, int *length, int *decimal_point)
Definition: fast-dtoa.cc:686
static const uint32_t kTen7
Definition: fast-dtoa.cc:211
static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector< char > buffer, int *length, int *kappa)
Definition: fast-dtoa.cc:362
static const uint32_t kTen9
Definition: fast-dtoa.cc:213
static const int kMaximalTargetExponent
Definition: fast-dtoa.cc:25
Debugger support for the V8 JavaScript engine.
Definition: accessors.cc:20