V8 Project
instructions-arm64.cc
Go to the documentation of this file.
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_ARM64
8 
9 #define ARM64_DEFINE_FP_STATICS
10 
13 
14 namespace v8 {
15 namespace internal {
16 
17 
18 bool Instruction::IsLoad() const {
20  return false;
21  }
22 
24  return Mask(LoadStorePairLBit) != 0;
25  } else {
26  LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
27  switch (op) {
28  case LDRB_w:
29  case LDRH_w:
30  case LDR_w:
31  case LDR_x:
32  case LDRSB_w:
33  case LDRSB_x:
34  case LDRSH_w:
35  case LDRSH_x:
36  case LDRSW_x:
37  case LDR_s:
38  case LDR_d: return true;
39  default: return false;
40  }
41  }
42 }
43 
44 
45 bool Instruction::IsStore() const {
47  return false;
48  }
49 
51  return Mask(LoadStorePairLBit) == 0;
52  } else {
53  LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
54  switch (op) {
55  case STRB_w:
56  case STRH_w:
57  case STR_w:
58  case STR_x:
59  case STR_s:
60  case STR_d: return true;
61  default: return false;
62  }
63  }
64 }
65 
66 
67 static uint64_t RotateRight(uint64_t value,
68  unsigned int rotate,
69  unsigned int width) {
70  DCHECK(width <= 64);
71  rotate &= 63;
72  return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
73  (value >> rotate);
74 }
75 
76 
77 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
78  uint64_t value,
79  unsigned width) {
80  DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
81  (width == 32));
82  DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
83  uint64_t result = value & ((1UL << width) - 1UL);
84  for (unsigned i = width; i < reg_size; i *= 2) {
85  result |= (result << i);
86  }
87  return result;
88 }
89 
90 
91 // Logical immediates can't encode zero, so a return value of zero is used to
92 // indicate a failure case. Specifically, where the constraints on imm_s are not
93 // met.
94 uint64_t Instruction::ImmLogical() {
95  unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
96  int64_t n = BitN();
97  int64_t imm_s = ImmSetBits();
98  int64_t imm_r = ImmRotate();
99 
100  // An integer is constructed from the n, imm_s and imm_r bits according to
101  // the following table:
102  //
103  // N imms immr size S R
104  // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
105  // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
106  // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
107  // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
108  // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
109  // 0 11110s xxxxxr 2 UInt(s) UInt(r)
110  // (s bits must not be all set)
111  //
112  // A pattern is constructed of size bits, where the least significant S+1
113  // bits are set. The pattern is rotated right by R, and repeated across a
114  // 32 or 64-bit value, depending on destination register width.
115  //
116 
117  if (n == 1) {
118  if (imm_s == 0x3F) {
119  return 0;
120  }
121  uint64_t bits = (1UL << (imm_s + 1)) - 1;
122  return RotateRight(bits, imm_r, 64);
123  } else {
124  if ((imm_s >> 1) == 0x1F) {
125  return 0;
126  }
127  for (int width = 0x20; width >= 0x2; width >>= 1) {
128  if ((imm_s & width) == 0) {
129  int mask = width - 1;
130  if ((imm_s & mask) == mask) {
131  return 0;
132  }
133  uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
134  return RepeatBitsAcrossReg(reg_size,
135  RotateRight(bits, imm_r & mask, width),
136  width);
137  }
138  }
139  }
140  UNREACHABLE();
141  return 0;
142 }
143 
144 
145 float Instruction::ImmFP32() {
146  // ImmFP: abcdefgh (8 bits)
147  // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
148  // where B is b ^ 1
149  uint32_t bits = ImmFP();
150  uint32_t bit7 = (bits >> 7) & 0x1;
151  uint32_t bit6 = (bits >> 6) & 0x1;
152  uint32_t bit5_to_0 = bits & 0x3f;
153  uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
154 
155  return rawbits_to_float(result);
156 }
157 
158 
159 double Instruction::ImmFP64() {
160  // ImmFP: abcdefgh (8 bits)
161  // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
162  // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
163  // where B is b ^ 1
164  uint32_t bits = ImmFP();
165  uint64_t bit7 = (bits >> 7) & 0x1;
166  uint64_t bit6 = (bits >> 6) & 0x1;
167  uint64_t bit5_to_0 = bits & 0x3f;
168  uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
169 
170  return rawbits_to_double(result);
171 }
172 
173 
175  switch (op) {
176  case STP_x:
177  case LDP_x:
178  case STP_d:
179  case LDP_d: return LSDoubleWord;
180  default: return LSWord;
181  }
182 }
183 
184 
185 int64_t Instruction::ImmPCOffset() {
186  int64_t offset;
187  if (IsPCRelAddressing()) {
188  // PC-relative addressing. Only ADR is supported.
189  offset = ImmPCRel();
190  } else if (BranchType() != UnknownBranchType) {
191  // All PC-relative branches.
192  // Relative branch offsets are instruction-size-aligned.
193  offset = ImmBranch() << kInstructionSizeLog2;
194  } else {
195  // Load literal (offset from PC).
196  DCHECK(IsLdrLiteral());
197  // The offset is always shifted by 2 bits, even for loads to 64-bits
198  // registers.
199  offset = ImmLLiteral() << kInstructionSizeLog2;
200  }
201  return offset;
202 }
203 
204 
205 Instruction* Instruction::ImmPCOffsetTarget() {
207 }
208 
209 
211  int32_t offset) {
212  return is_intn(offset, ImmBranchRangeBitwidth(branch_type));
213 }
214 
215 
216 bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
217  return IsValidImmPCOffset(BranchType(), DistanceTo(target));
218 }
219 
220 
221 void Instruction::SetImmPCOffsetTarget(Instruction* target) {
222  if (IsPCRelAddressing()) {
223  SetPCRelImmTarget(target);
224  } else if (BranchType() != UnknownBranchType) {
225  SetBranchImmTarget(target);
226  } else {
227  SetImmLLiteral(target);
228  }
229 }
230 
231 
232 void Instruction::SetPCRelImmTarget(Instruction* target) {
233  // ADRP is not supported, so 'this' must point to an ADR instruction.
234  DCHECK(IsAdr());
235 
236  ptrdiff_t target_offset = DistanceTo(target);
237  Instr imm;
238  if (Instruction::IsValidPCRelOffset(target_offset)) {
239  imm = Assembler::ImmPCRelAddress(target_offset);
241  } else {
242  PatchingAssembler patcher(this,
244  patcher.PatchAdrFar(target_offset);
245  }
246 }
247 
248 
249 void Instruction::SetBranchImmTarget(Instruction* target) {
251  Instr branch_imm = 0;
252  uint32_t imm_mask = 0;
253  ptrdiff_t offset = DistanceTo(target) >> kInstructionSizeLog2;
254  switch (BranchType()) {
255  case CondBranchType: {
256  branch_imm = Assembler::ImmCondBranch(offset);
257  imm_mask = ImmCondBranch_mask;
258  break;
259  }
260  case UncondBranchType: {
261  branch_imm = Assembler::ImmUncondBranch(offset);
262  imm_mask = ImmUncondBranch_mask;
263  break;
264  }
265  case CompareBranchType: {
266  branch_imm = Assembler::ImmCmpBranch(offset);
267  imm_mask = ImmCmpBranch_mask;
268  break;
269  }
270  case TestBranchType: {
271  branch_imm = Assembler::ImmTestBranch(offset);
272  imm_mask = ImmTestBranch_mask;
273  break;
274  }
275  default: UNREACHABLE();
276  }
277  SetInstructionBits(Mask(~imm_mask) | branch_imm);
278 }
279 
280 
281 void Instruction::SetImmLLiteral(Instruction* source) {
283  ptrdiff_t offset = DistanceTo(source) >> kLoadLiteralScaleLog2;
284  Instr imm = Assembler::ImmLLiteral(offset);
285  Instr mask = ImmLLiteral_mask;
286 
287  SetInstructionBits(Mask(~mask) | imm);
288 }
289 
290 
291 // TODO(jbramley): We can't put this inline in the class because things like
292 // xzr and Register are not defined in that header. Consider adding
293 // instructions-arm64-inl.h to work around this.
295  // Inline data is encoded as a single movz instruction which writes to xzr
296  // (x31).
297  return IsMovz() && SixtyFourBits() && (Rd() == xzr.code());
298  // TODO(all): If we extend ::InlineData() to support bigger data, we need
299  // to update this method too.
300 }
301 
302 
303 // TODO(jbramley): We can't put this inline in the class because things like
304 // xzr and Register are not defined in that header. Consider adding
305 // instructions-arm64-inl.h to work around this.
306 uint64_t InstructionSequence::InlineData() const {
307  DCHECK(IsInlineData());
308  uint64_t payload = ImmMoveWide();
309  // TODO(all): If we extend ::InlineData() to support bigger data, we need
310  // to update this method too.
311  return payload;
312 }
313 
314 
315 } } // namespace v8::internal
316 
317 #endif // V8_TARGET_ARCH_ARM64
static Instr ImmTestBranch(int imm14)
static Instr ImmCmpBranch(int imm19)
static Instr ImmPCRelAddress(int imm21)
static Instr ImmLLiteral(int imm19)
static Instr ImmCondBranch(int imm19)
static Instr ImmUncondBranch(int imm26)
void SetInstructionBits(Instr value)
Instr Mask(uint32_t mask) const
Instruction * InstructionAtOffset(int64_t offset, CheckAlignment check=CHECK_ALIGNMENT)
void SetPCRelImmTarget(Instruction *target)
void SetImmPCOffsetTarget(Instruction *target)
Instruction * ImmPCOffsetTarget()
bool IsTargetInImmPCOffsetRange(Instruction *target)
static bool IsValidImmPCOffset(ImmBranchType branch_type, int32_t offset)
static bool IsValidPCRelOffset(int offset)
void SetImmLLiteral(Instruction *source)
void SetBranchImmTarget(Instruction *target)
static int ImmBranchRangeBitwidth(ImmBranchType branch_type)
ImmBranchType BranchType() const
ptrdiff_t DistanceTo(Instruction *target)
static const int kAdrFarPatchableNInstrs
#define UNREACHABLE()
Definition: logging.h:30
#define DCHECK(condition)
Definition: logging.h:205
int int32_t
Definition: unicode.cc:24
LSDataSize CalcLSPairDataSize(LoadStorePairOp op)
const unsigned kXRegSizeInBits
const unsigned kWRegSizeInBits
const int ImmPCRel_mask
const unsigned kLoadLiteralScaleLog2
static float rawbits_to_float(uint32_t bits)
Definition: utils-arm64.h:41
static double rawbits_to_double(uint64_t bits)
Definition: utils-arm64.h:48
bool is_intn(int64_t x, unsigned n)
Definition: utils.h:898
bool IsAligned(T value, U alignment)
Definition: utils.h:123
const unsigned kInstructionSize
const unsigned kInstructionSizeLog2
Debugger support for the V8 JavaScript engine.
Definition: accessors.cc:20